TOSHIBA MOS MEMORY PRODUCTS

4096 WORD x 1 BIT STATIC RAM
N CHANNEL SILICON GATE DEPLETION LOAD

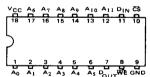
TMM315D-1

DESCRIPTION

TMM315D/TMM315D-1 are 4096 word x 1 bit read write memories operated with 5V single power supply. The memories are static in operation and require no clocks or refresh period. This device has two types in data access - address access and chip select access which are equal and very high speed. When $\overline{\text{CS}}$ goes high, this device is deselected and changes into the low power standby mode automatically, and keep its state during the period that $\overline{\text{CS}}$ is high. Accordingly, this device is suitable for use in

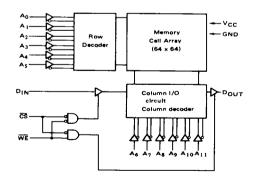
larger memory system which the majority of devices are deselected, and is suitable for use in cache memory required very high speed. TMM315D/TMM315D-1 are directly TTL compatible and its output can drive the TTL up to 5. TMM315D/TMM315D-1 are fabricated with N-channel silicon gate depletion load type technology for stable and high performance. The chip is mounted in the standard 18 pin package of 0.3 inch width for low cost purpose.

FEATURES


- Fully decoded 4096 word x 1 bit organization
- Static operation No clocks
- 5V single power supply
- Easy memory expansion CS input
- Standby feature $-\overline{CS} = V_{IH}$
- I/O separate
- · Three state output
- Directly TTL compatible

Current and Access time (Maximum value)

PARAMETER	TMM315D-1	TMM3150
Active Current (Max.)	180 mA	160 mA
Standby Current (Max.)	30 mA	20 mA
Address Access time	55 ns	70 ns
Chip select Access time	55 ns	70 ns


- Pin to pin compatible i2147/i2147-3
- Inputs protected All inputs have protection against static charge.

PIN CONNECTION (TOP VIEW)

$A_0 \sim A_5$	Row Address inputs
A ₆ ~ A _{1 1}	Column Address inputs
DIN	Data input
Роит	Data output
CS	Chip select input
WE	Write enable input
Vcc/GND	Power supply

BLOCK DIAGRAM

OPERATION MODE

<u>cs</u>	WE	Output	Power	Mode
Н		High-Impedance	Standby	Deselected
L	Н	Data out	Active	Read
L	L	High-Impedance	Active	Write

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power supply voltage	-1.5 ~ 7.0	V
VIN, OUT	Input and output voltage	-1.5~7.0	V
Topr	Operating temperature	0~70	•°C
T _{strg}	Storage temperature	-55 ~ 150	°C
Tsolder	Soldering temperature · time	260 · 10	°C · sec
PD	Power dissipation (Ta = 70°C)	1.0	w
lout	DC output current	20	mA

DE CHEF ATENG CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ViH	Input high voltage		2.0		6.0	V
VIL	Input low voltage		-1.0	_	0.8	V
Vcc	Power supply voltage		4.5	5.0	5.5	V

DEPOS HEREING CHARLES ERREITES

Ta = $0 \sim 70^{\circ}$ C, Vcc = 5.0V± 10%,unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Voн	Output high voltage	source = -	4.0 mA	2.4			V
Vol	Output low voltage	Isink = 8 m	Δ		-	0.4	V
Юн	Output high current	Von = 2	VoH = 2.4V		-		mA
loL	Output low current	V _{OL} = 0.4V		8.0		_	mA
ILI	Input leakage current	VIN = 0 ~ VCC		_	± 0.01	± 10	μА
lLO	Output leakage current	$V_{OUT} = 0 \sim 4.5V$ $\overline{CS} = V_{IH} \text{ or } \overline{WE} = V_{IL}$		_	±0.1	± 50	μА
lcc	Operating current	CS = VIL	TMM315D	-	_	160	mA
	Operating current	output open	TMM315D-1		-	180	mA
ISB	Standby current	CS = VIH	TMM315D		_	20	mA
130	Standby current	output open	TMM315D-1	_	_	30	mA
ISBP	Peak power on current	CS = VIH	TMM315D	_	_	50	mA
1301	T can power off current	during power on	TMM315D-1	_	_	70	mA

^{*} Typical values are at Vcc = 5.0V, Ta = 25°C.

A.C. CHARACTERISTICS

Ta = $0 \sim 70$ °C, V_{CC} = 5V± 10%,unless otherwise noted.

READ CYCLE

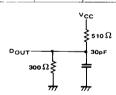
SYMBOL PA	PARAMETER	TMM	315D-1	TMM315D		
		MIN.	MAX.	MIN.	MAX.	UNIT
trc	Read cycle time	55	_	70	· -	пs
tACC	Address access time		55		70	ns
tco ₁	Chip select access time 1	_	55	-	70	ns
tCO2	Chip select access time 2	_	65	_	80	ns
tон	Output hold from address change	5	T -	5	·	ns
tLZ	Chip selection to output in low Z	10		10	†	ns
tHZ	Chip deselection to output in high Z	0	40	0	40	ns
tPU	Chip selection to power up time	0		0	† <u>-</u>	ns
tPD	Chip deselection to power down time		30	_	30	ns

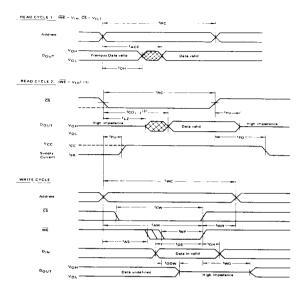
. WRITE CYCLE

SYMBOL	PARAMETER	TMM	TMM315D-1		TMM315D	
	FANAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write cycle time	55	_	70	-	ns
tcw	Chip selection to end of write	45	_	55	_	ns
taw	Address valid to end of write	45	-	55	_	ns
tAS	Address set up time	0	-	0		ns
twp	Write pulse width	35	i –	40	_	ns
twn	Write recovery time	10	1	15		ns
tos	Data set up time	25	1 -	30	-	ns
tDH	Data hold time	10	T -	10	-	ns
topw	Write enable to output in high Z	0	30	0	35	ns
two	Output active from end of write	0		0	_	ns

• AC TEST CONDITIONS

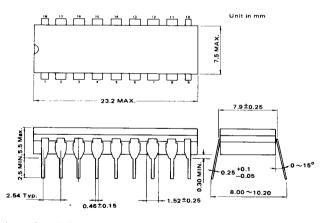
Input pulse levels	0~3.5V
Input rise and fall times	10 ns
Input and output timing reference levels	1.5V
Output load	See Fig.




Fig. 1 Output load

SYMBOL	PARAMETER	MAX.	UNIT
CIN	Input capacitance	5	ρF
Cout	Output capacitance	7	ρF

This parameter is periodically sampled and is not 100% tested.


TOSHIBA

TIMING WAVEFORMS

Note: (1) Addresses are to valid prior to or coincident with CS transition low.

(2) tCO1: Chip is deselected for a time that is greater than 55 ns prior to selection. tCO2: Chip is desalected for a time that is less than 55 ns prior to selection.

Note: 1. Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 18 leads.

2. All dimensions are in millimeters.

Toshiba does not assume any responsibility for use of any circultry described; no circult patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Aug., 1980 Toshiba Corporation